Chapter 3

Optimization without

constraints

When facing problems of the real life, investors, and more generally economic
agents, try to do their best. This means that they try to take the best
decision, taking into account the information they have.

In most cases, the real world is too complex to be entirely embedded in
the formulation of the optimization problem. Models of decision making use
simplified representations of the real world. In these simplified frameworks,
taking a decision often means maximizing or minimizing a function depending
on several variables.

In microeconomics, all the theory is based on the assumption that agents
maximize their expected utility. The utility functions are assumed concave
and, of course, non-linear, because of the decreasing marginal utility.

In Markowitz portfolio theory!, investors minimize the risk (measured
by the variance of returns) of their portfolio, being given a threshold of
expected return they want to reach. Equivalently, the problem can be solved
by maximizing the expected return, being given a level of risk the investor

accepts to bear.

"Markowitz, H.(1952), Portfolio Selection, Journal of Finance, 7(1), 77-91.
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In corporate finance, firms try to maximize their profits but have to take
into account the inverse relationship between the prices of the products they
sell and the demand for these products. The firms also try to minimize their
costs which are decomposed between fixed and variable costs. In general,
decisions that decrease fixed costs have a tendency to increase variable costs.
Solving this kind of problem is a matter of optimization.

All these examples show that economic life is paved with the resolution
of optimization problems. These problems may include constraints on the
possible values of decision variables.

This chapter is devoted to the methods adapted to the resolution of non-
linear optimization problems. We assume that no constraint on the decision
variables makes the problem more complex to solve. The following chapter
will be devoted to these constrained optimization problems.

For the sake of simplicity, we start by single-variable optimization. In
principle, the reader already knows these preliminary results. They are in-
tuitive if derivatives of functions had been well understood.

Optimizing functions of several variables is a little bit more difficult
because optimality conditions are related to partial derivatives and to the
Hessian matrix. Here too, these optimality conditions are natural if partial

derivatives and Hessian matrix are understood.

3.1 Preliminaries

3.1.1 The domain of optimization

In general, the functions f to be optimized are defined on a domain D C R",
and take their values in R. An optimization problem can then be written in

one of the two following ways:

max f(x) or minf(x)
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Analysis and Linear Algebra for Finance: Part Il Optimization without constraints

The first formulation means that we look for z* € D such that f(z*) is
the maximum value taken by f on the domain D; in the second formulation
we look for x* € D such that f(z*) is the minimum value taken by f on D.

As already mentioned, D can be equal to R", but in most cases D is a
subset of R", either because f is not defined on all R™ or because of the
characteristics of the problem. For example, when minimizing the risk of a

portfolio, assuming that shortsales are forbidden imply restrictions on the

domain D.
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Let the function f be defined by:

f(x) = /x129
D is written as follows:
D={zeR® [z, >0}

because square roots are defined only for positive numbers.

Optimization criteria also depend on the shape of the domain D. More
precisely, the fact that D is open or closed has an influence on the existence
of a solution to the problem at hand.

To illustrate this remark, consider the following problem:

grélgf(x) = 2> -4 (3.1)
D = [-3;+2] (3.2)

This function has a minimum value equal to —4 for x = 0, that is f(0) =
—4 < f(z) for any x € D. Figure 3.1 shows the graph of the function; you
can observe that the first derivative of f at = 0 is equal to 0. In fact, f’ is
given by:

f(z) =2 (3.3)

Moreover, the sign of the derivative changes at x* = 0 but f” is always
positive (f”(x) = 2). The function f is then convex and "easier" to minimize.

Suppose now that you are looking for a maximum. Figure 3.1 shows
that the maximum is reached for 2** = —3 with f(2**) = 5. However, the
criterion based on the value of the derivative cannot be applied because ** is
on the frontier of D. In this kind of situation, the solution is called a corner
solution. The difficulty is that D is closed. On the contrary, if D = |-3;2]
(D is open), f hasno maximum but the minimum stays unchanged at z* = 0.

These preliminary remarks show that solving an optimization problem
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Figure 3.1: The function f(x) = 2% — 4

using the successive derivatives works well if the domain is open. The solution

can be more complicated to find when the domain is closed.

3.1.2 Regularity of the function to be optimized

The second feature playing a role in optimization programs is to know if the
function to be optimized is sufficiently regular. Of course, if optimization
criteria are based on derivatives the least we can ask is that these derivatives
exist.

For example, consider the function defined on R by f(x) = |z|; f reaches
its minimum for x = 0, but f is not differentiable at 0 (see figure 3.2). In fact,
the derivative of f is nowhere equal to 0. The kind of irregularity observed
at 0 is not that "wild", because f possesses at that point a right-derivative
and a left-derivative. Nevertheless, no simple criterion can be found to solve
the problem.

The example of f(z) = |z| allows to understand why standard optimiza-
tion conditions presented in the next sections require that the functions to
be optimized are sufficiently regular. In financial applications, this regularity

assumption is not too constraining or, more precisely, seems reasonable in a
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Figure 3.2: The function f(x) = |z

number of circumstances.

3.1.3 Local and global optimum

Consider the function f(x) = xsin(x) depicted on figure 3.3; the graph is
limited to the domain D = [—7;+7]. This function does not often show
up in financial models but it is nevertheless interesting to understand the
distinction between different types of optima.

First, f is regular and possesses all derivatives you might need. Second,
it is clear that there are several points where the first derivative is equal to
0.

However, we immediately observe that the natural criterion of a null first
derivative is not sufficient to distinguish maxima and minima. Looking at
second-order derivatives allows to distinguish the two but only locally, that
is on a short interval around the optimum under consideration.

The fact that derivatives provide local conditions to optimize functions is
a serious problem in practical issues because all methods based on derivatives
provide at best a local optimum (they are called gradient methods).

Finally, in this preliminary analysis, we have to mention that even the two
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Figure 3.3: The function f(x) = xsin(z) on the domain [—7; 7]

first derivatives are often not sufficient to identify a maximum or a minimum.

3 over the domain

Look at figure 3.4 that represents the function f(z) =«
D = [—2;+2] . The first two derivatives of f are equal to 0 at z* = 0. However,
the function has neither a minimum nor a maximum at z*. One more time,
a first derivative equal to 0 does not guarantee the existence of an optimum,
without assuming something else.

Consider now the function f(z) = 2* (figure 3.5); the function reaches its
minimum at x* = 0 with the two first derivatives equal to 0 at x*.

In short, all these examples show that life may be complicated when it
comes to optimizing. It is the reason why the different cases are examined

in some details in the following sections.
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Figure 3.4: The function f(x) = 23

Figure 3.5: The function f(x) = z*

3.2 Optimizing a single-variable function

We start by the most simple case: a function f depending on a single variable
x. We are going to characterize minima and maxima of f, defined on a domain

D C R and taking values in R.

reD— f(z) eR (3.4)

The examples of the preceding section show that restrictions are neces-

sary, either on D or on f, to obtain tractable optimality conditions. The first
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restriction, valid for the remainder of the section, is the following.
Assumption: D is an open subset of R and the functions con-
sidered in this section are twice continuously differentiable.
To avoid going back to part I of the book, we recall hereafter the definition

of global and local optima.

Definition 124 a) xg is a local maximum (minimum) of f if:
Vo € oy — ;20 + &, [ f(zo) > (L) f(x)

b) xg is a global maximum (minimum) of f if there exists € > 0 such
that:
Va € D, f(x) > (<) f()

3.2.1 Necessary conditions of optimality

Proposition 125 If xy is a local optimum of f then f'(xy) =0

Keep in mind that this condition is necessary, not sufficient. You need
to know that xy is an optimum to say that the first-derivative is equal to 0
at zo. To emphazise the intuition that drives the result, consider the case
of a local minimum. In a narrow interval including x,, the function f is
decreasing (increasing) on the left (right) of zy (otherwise zy would not be
a minimum). Therefore, f’ is negative on the left of zq and positive on the
right. But we assumed that f is at least twice continuously differentiable;
it means in particular that f’ is continuous. A continuous function being
negative (positive) on the left(right) of x, is equal to 0 at x.

Of course, a necessary condition is not very useful to solve empirical
problems because in such problems we are looking for x(; in most cases we
do not look for properties of f at xy when we know that z( is an optimum.

It is the reason why sufficient conditions are more popular.
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3.2.2 Sufficient conditions of local optimality

Proposition 126 z is a local mazimum (minimum) of f if:
a) f'(zo) =0
b) f7 (o) < (>)0

This proposition comes from the Taylor series expansions presented in
part I of the book for single-variable functions and in the preceding chapter

for functions depending on several variables. In fact, we can write:

Flao + 1) = £(a0) + hf (o) + o (x0) + =(h)

If f'(zg) = 0 and (h?) is negligible with respect to h? the difference
f(zo+h)— f(zo) has the sign of f” (o). If f7(xo) < 0, then f(zo) > f(zo+h)
meaning that zy is a local maximum of f. Figure 3.1 is an illustration of
the proposition. The minimum is obtained at zy = 2 and the derivative is
increasing over an interval including xg. Therefore, the derivative of f’ is

positive but this derivative is f”.

Remark 127 Proposition 126 gives a sufficient condition but this condition
is not necessary. The function f(x) = x* represented on figure 3.5 provides
a good counter-example. In fact, there is a minimum at 0 but the two first
deriwatives are equal to 0. In general, for polynomials like x™, a minimum
exists if n is even and an inflection point appears for n odd. This remark

justifies the general result hereafter.

3.2.3 Necessary and sufficient optimality conditions

Proposition 128 z, is a local mazimum (minimum) of f if and only if*:
a) f'(xo) =0
b) The order of the first non zero derivative at xy is even and the corre-

sponding derivative is negative (positive).

2"if and only if" is often shortened in "iff".

Download free eBooks at bookboon.com


http://bookboon.com/

The optimality conditions presented so far are local optimality conditions.
To obtain global conditions, we need to impose more assumptions on the
behavior of f. The idea is that f should not be "authorized" to behave like

xsin(z) with multiple changes in the sign of derivatives.

3.2.4 Global optimality conditions

Proposition 129 If f is concave (convex) on the open conver domain D,

xg s a global maximum (minimum) of f if f'(x¢) = 0.

This result provides a very simple optimality condition only depending
on the first derivative of f. Of course, the simplicity of the result comes from
the concavity /convexity assumption which determines the sign of the second-
order derivative. Knowing that many functions in finance or microeconomics
problems satisfy this concavity /convexity assumption® is important. In such
problems, checking if the first-order derivative is equal to 0 is enough to

characterize a global optimum of f.

3The optimisation problems to solve are called "concave problems" in this case.
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Corollary 130 If f is strictly concave (convex), the first-order condition

provides the unique optimum.

All the propositions of this section refer to single-variable functions. How-
ever, the geometric approach underlying the results is general. If z( is an
optimum, the first-order condition says that the tangent to the curve repre-
senting f at xq is horizontal (its slope is 0). In the same spirit, the second-
order condition is justified by the second-order Taylor series expansion which
determines the sign of the changes in f around x(. In the next section de-
voted to the optimization of functions depending on several variables, the
tools are different, maybe a little bit more complex, but the logic and the
geometry of the problem remain the same.

There is no difficulty to address a 30-variable problem when you know how
to deal with a 29-variable problem. The "difficult" step is from single-variable
functions to two-variable functions. It is the reason why we introduce an

intermediate section devoted to the optimization of functions of two variables.

3.3 Optimizing a function of two variables

Devoting some place to optimizing functions of two variables is justified by
the fact that such functions are represented by surfaces in three-dimensional
spaces. It is then possible to draw their graphs, even if we are limited to two
dimensions on the paper. With more than two variables, no graph can be
drawn (as far as I know!) by standard means. Figure 3.6 is an example of
the graph of a two-variable function.

The function f is defined by :

f(z1,33) = exp (—a] — 23)

f has a maximum at (0,0) where it is worth 1, because exp(0) = 1.
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Figure 3.6: The function f(z1,22) = exp(—z% — 13)

Suppose now that the second variable x5 is constant, equal to 1. f(z1, x2)

becomes the single-variable function g(x;) defined by:
g(x1) = f(1,1) = exp(—ai — 1)
g is represented on figure 3.7.

exp(—af — 1)

g reaches a maximum at z] = 0 and its derivative equals 0 at z]. In
the same spirit we can define h(z3) by keeping x; constant. In such a case,
h also has a maximum at xo = 0 with a null derivative at that point. But
remember that keeping one variable constant is exactly what we did in the

first part of the book to define partial derivatives of f(xy,x2).

These remarks mean that partial derivatives are important in characteriz-
ing optima in multidimensional problems. The definitions of ¢ and h and the
properties of their derivatives show that two directions (along the z-axis and
along the z,-axis) should be considered when dealing with f. A maximum

(x7,23) of f should be a maximum for g when the value of x5 is fixed to x}
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Figure 3.7: La fonction f(z1,1) = exp(—x%)

and a maximum for h when the value of z; is fixed to x]. The geometric
interpretation of this intuition is that the two-dimensional space tangent to
the graph of f should be horizontal, that is parallel to the (xy, z5) plane. In
fact, if it is not the case, we could find directions toward which f increases,
a contradiction if (z7, z3) is a maximum.

The following subsections formalize the intuitions we just described. As
in the preceding section we assume the following.

Assumption: D is an open subset of R? and the functions con-
sidered in this section are twice continuously differentiable.

Continuous second-order partial derivatives ensure that the Hessian ma-
trix is symmetric. For applications in finance and economics, it is not a

restrictive assumption.

3.3.1 Local optimality conditions

Proposition 131 If z* = (23, 23) is a local optimum of f, then:

Of oy _ OF .
—(2%) = =—(z

(9x1 N 81’2 ) =0

This proposition formalizes the intuition we just described by means of
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functions g and h. In the neighborhood of a maximum z*, the values of f are
lower than f(x*), especially toward the directions of z; and x5 (that is if f is
replaced by g or h). The conditions on partial derivatives say nothing else.
These conditions can be shortened by writing V f(z*) = 0 where V f(z*) is
the gradient of f at z*, (remember that the gradient is the vector of partial

derivatives).

Of course, the gradient condition cannot be sufficient, simply because
it does not allow to distinguish minima and maxima. Moreover, we already
showed for single-variable functions that inflection points can exist. For func-
tions depending on two variables, other more tricky situations can appear.
Consider the function f defined by :

fla) = ai — 23
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Figure 3.8: Example of a saddle point

The two first-order partial derivatives are equal to 0 at x = (0;0). In
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fact, these derivatives are equal to:

However, x = (0;0) is neither a maximum nor a minimum. The problem
comes from the fact that, on one side, g (as a function of x; only) is convex
and has a minimum at 0, but, on the other side, h (as a function of xs
only) is concave and has a maximum at 0. This kind of situation is called
a saddle point because, as you can see on figure 3.8, the graph of f in the
neighborhood of (0, 0) looks like a horse saddle.

This example shows that obtaining sufficient optimality conditions is go-
ing to require some precautions, even for local optima. In part I, we showed

2 second-order partial derivatives for a function depending

that there are n
on n variables. Therefore, we have 4 elements in the Hessian matrix for
our functions depending on two variables. Eventually, the properties of the
Hessian matrix are driving the sufficient conditions of optimality. They also

allow to distinguish between optima and saddle points.
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Proposition 132 z* is a local mazimum (minimum) of f if the following
conditions are satisfied:

1) Vf(x*)=0

2) Hy(x*) is negative (positive) definite

As for single-variable functions, the proof of this proposition is based on
Taylor’s formula. Let us denote h' = (hy, ho); we can approximate f(z* + h)

as follows:
fa® +h) = f(z") + MV (") + %h/Hf(ﬂf*)h +e(1h]1*)

f(z* 4+ h) — f(z*) and h'Hy(x*)h have the same sign when condition (1)
is satisfied; if Hy(x*) is negative definite, h'H(2z*)h < 0, and then f(z*) >
f(x*+ h). Symetrically, if Hy(z*) is positive definite, 2* is a local minimum.

Positive and negative definite matrices have been characterized in chapter

1. Using this characterization, proposition 132 can be rewritten as follows.

Corollary 133 z* is a local mazimum (minimum) of f if:
1) Vf(x*)=0
2
2) %(m*) < (>)0 and Det(Hs(z*)) >0

In fact, for a matrix to be negative definite, the signs of its principal
minors must alternate, the first one being negative. For a matrix to be
positive definite, all principal minors must be positive.

Looking more closely to the corollary can give the false idea that variable
1 is more important than variable 2. Of course, it is not the case because the

determinant of H(z*) writes

_ %/

=52
Oxy

Det(Hy(x"))

L *>r

8_37% 03718332 (:C

If this determinant is positive, the two second-order partial derivatives 227{ (x*)
1

and %(x*) have the same sign because the product of the two is positive.
2
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But the formulation of the corollary says nothing about what happens
when the determinant is not strictly positive.
Considering the example presented at the beginning of the section (f (21, x2) =

Hf(ib’)zl2 ! ]

x] — x3) leads to:
0 -2

and Det (H(x)) = —4. The signs of the principal minors alternate but the
first one is positive and the determinant is negative. These features charac-

terize a saddle point.

3.3.2 Global optimality conditions

The reasoning is exactly the same as the one we used for single-variable
functions. To obtain global optimality conditions, we need to impose some
restrictions (convexity or concavity) on the behavior of f.

We then obtain the following proposition.

Proposition 134 If f, defined on a convex D C R?, is concave (convex), x*

is a global mazimum(minimum) if V f(x*) = 0.

This proposition is a direct generalization of proposition 129. The global
optimum is obtained by means of a first-order condition because second-order
conditions are automatically satisfied when f is concave (for a maximum) or
convex (for a minimum). Corollary 130 can be rewritten for functions of two

variables without changing a single word.

Corollary 135 If f is strictly concave (convex), the first-order condition

provides the unique maximum (minimum,).

Figure 3.9 represents the function f(x) = 22 + 2 which reaches its min-
imum at z* = (0,0). The principal minors of H(z) are positive because

the Hessian matrix is diagonal, each term of the diagonal being equal to 2.
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We observe on figure 3.9 that the null gradient at (0,0) is equivalent to a

horizontal tangent plane at that point.
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Figure 3.9: Horizontal tangent plane at the minimum of f(xy,z2) = 23 + 23

Many problems in finance assume the convexity (concavity) of the func-
tion to be minimized (maximized). Therefore, solutions often come by means
of first-order conditions only, even if the concavity (convexity) of the func-
tion is not recalled systematically. For example, it is not always recalled that
utility functions are assumed concave because it is a standard assumption in

99.9% of the models.

3.4 Functions of n variables

The general case of functions depending on n variables is not very different
from the case n = 2 addressed in the preceding section....except that we
cannot visualize the functions. The consequence of this proximity is that the
statements of this section, especially the optimality conditions, are almost
the same as the ones developed in the preceding section.

All the functions considered hereafter are defined on an open set D C R™.

As usual, they are supposed twice continuously differentiable.
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3.4.1 Local optimality conditions

Proposition 136 If x* is a local optimum of f, then the gradient of f at

x*18 0.

Remember that, in problems with two variables, this condition means that
the tangent plane at x* is horizontal, that is parallel to the plane x1Ox5. In R"
surfaces are called hypersurfaces and planes are hyperplanes. The meaning
of "horizontal" is not intuitive in higher dimensions...but the idea is still the
same. If f is reduced to a single-variable function by fixing, say, the values
of the last n — 1 variables, the partial derivative of f with respect to the
first variable must be 0 if * is an optimum. If it was not the case, we could
find a direction toward which the function f increases (for a maximum) or

decreases (for a minimum). It would be a clear contradiction.

Proposition 137 z* is a local mazimum (minimum) of f if the gradient of

f is zero at x* and the Hessian matriz is negative(positive) definite at x*.

Corollary 138 1) z* is a local mazimum of f if its gradient is 0 at x* and
if the signs of the principal minors of Hy(xz*) alternate, the first one being
negative.

2) x* is a local minimum of f if its gradient is 0 at x* and if the principal

minors of H(x*) are positive.

We let the reader check that corollary 133 is a special case of the above

corollary.

Example 139 In this example, we are going to show how to build a term
structure of (continuous) interest rates in a very simple case. We assume
that three bonds are traded with respective maturities 1, 2 and 4 years. Table
3.1 summarizes the data.

We assume a simple term structure of the following form:

Ty =a -+ th.S
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Bond | Maturity | Coupon rate | Price(in %)
XXX |1 6% 101

YYY |2 5% 99.5

177 4 5.5% 100.5

Table 3.1: Bonds description

where t denotes the horizon under consideration, a and b are parameters to
be estimated by minimizing the sum of the squares of the differences between
observed prices and estimated prices. Note that if only the first two bonds
are considered, a and b can be estimated without errors on prices. In fact,

we should solve:

101 = 106exp(—a —b)
99.5 = 5exp(—a —b) + 105exp(—a — b2°¥)

The first equality is justified because the first bond pays a unique cash-flow of
106 in 1 year (the coupon rate is 6%). The second equality states the equality
of the price and of the sum of the discounted cash-flows for the second bond.

Solving these simple equations leads to:

a = —25287 x 1072
b = .0736

Applying this estimation to the last bond gives a theoretical price of:

4
D 5.5xexp(2.5287x 1077 —. 0736t"%)-+105.5 exp(2.5287x 10> . 0736x4"%) = -
t=1

But the market price is 100.5. There is a large difference, meaning that

a perfect match of the three prices is impossible.
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a and b must be estimated by minimizing the following function:

3

fla,b) =" (mi —7:)?
i=1
where ; is the market price and 7; is the theoretical price.
Of course, in practice the problem is not solved manually but using a
computer program or, at least, a spreadsheet. For example, the Excel Solver

can easily solve this problem.
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3.4.2 Global optimality conditions

We can repeat word by word what we said for functions of two variables; we
just need to adapt the dimensions. To obtain global optimality conditions,
we impose convexity or concavity of f.

We then obtain the following proposition.

Proposition 140 If f, defined on a convex subset D C R™, is concave (con-

vez), x* is a global mazimum(minimum) if V f(z*) = 0.

The global optimum is obtained by means of a first-order condition be-
cause second-order conditions are automatically satisfied (f concave for a

maximum and f convex for a minimum).
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Analysis and Linear Algebra for Finance: Part II Optimization without constraints

Corollary 141 If f is strictly concave (convex), the first-order condition

provides the unique optimum.

This corollary is exactly the same as corollary 135. The reader under-
stands now why it was useful to devote some place to functions depending

on two variables.
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